MEMORANDUM APPLICATION OF CALCULUS

May - June 2021

QUESTION/VRAAG 10

10.2.2 Area of shaded region
$$= \frac{(\pi - 2)}{4} (x^4 - 2x^3 + x^2)$$

$$\frac{dA}{dx} = \left(\frac{\pi - 2}{4}\right) (4x^3 - 6x^2 + 2x)$$

$$4x^3 - 6x^2 + 2x = 0$$

$$x(2x^2 - 3x + 1) = 0$$

$$x(2x - 1)(x - 1) = 0$$

$$x \neq 0 \quad \text{or} \quad x = \frac{1}{2} \quad \text{or} \quad x \neq 1$$

$$\checkmark \left(\frac{\pi - 2}{4}\right) (4x^3 - 6x^2 + 2x)$$

$$\checkmark \text{factors}$$

$$\checkmark x = 0; x = 1; x = \frac{1}{2}$$

$$\checkmark x = \frac{1}{2}$$
(4)

MAY – June 2017

OUESTION/VRAAG 10

10.1 $60 = 2b + 2r + \frac{1}{2}(2\pi r)$ $2b = 60 - 2r - \pi r$ $b = 30 - r - \frac{1}{2}\pi r$ $10.2 \text{Area} = \text{area of rectangle} + \text{area of semicircle}$ $\checkmark 60 = 2b + 2r + \frac{1}{2}(2\pi r)$ $\checkmark b = 30 - r - \frac{1}{2}\pi r$	(2)
$b = 30 - r - \frac{1}{2}\pi r$ $b = 30 - r - \frac{1}{2}\pi r$	2)
10.2 Area = area of rectangle + area of semicircle	(2)
10.2 Area = area of rectangle + area of semicircle	- 1
	- 1
$A(r) = length \times breadth + \frac{1}{2} (area of circle)$	
$= (2r)\left(30 - r - \frac{1}{2}\pi r\right) + \frac{1}{2}(\pi r^2)$	
$\sqrt{1}(m^2)$	
$=60r-2r^2-\pi^{r^2}+\frac{1}{2}\pi^{r^2}$	
$= 60r - 2r^2 - \frac{1}{2}\pi r^2$	
$=60r - \left(2 + \frac{1}{2}\pi\right)r^2$	
For a maximum,	
$A'(r) = 0$ $\checkmark A'(r) = 0$	
$A'(r) = 0$ $60 - 2\left(2 + \frac{1}{2}\pi\right)r = 0$ $4 - 2\left(2 + \frac{1}{2}\pi\right)r = 0$ $4 - 2\left(2 + \frac{1}{2}\pi\right)r$	
$60 - (4 + \pi)r = 0$	
$r = \frac{60}{4 + \pi}$	
= 8,40 m ✓ answer	
	(6)
	[8]

QUESTION/VRAAG 10

10.1	$\frac{h}{r} = \tan 60^{\circ}$ $r = \frac{h}{\tan 60^{\circ}}$	$\checkmark \frac{h}{r} = \tan 60^{\circ}$
	$\therefore r = \frac{h}{\sqrt{3}}$	✓answer (2)
10.2	$V_{\text{cone}} = \frac{1}{3} \pi r^2 h$	√formula
	$= \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$ $= \frac{1}{9}\pi h^3$	✓ substitution of the value of r in terms of h ✓ simplified volume answer
	$\frac{dV}{dh} = \frac{1}{3}\pi h^2$	✓ derivative
	$\frac{dV}{dh}\Big _{h=9} = \frac{1}{3}\pi (9)^2$ = 27π or $84,82 \text{ cm}^3/\text{cm}$	✓answer (5) [7]

QUESTION 11

11.1	Length of box = $3x$	✓ length of box = $3x$	
	$Volume = l \times b \times h$	(0, 2,)	
	$9 = 3x \cdot x \cdot h$	$\checkmark 9 = 3x \cdot x \cdot h$	
	$9 = 3x^2h$	$\checkmark h = \frac{3}{r^2}$	
	. 3	$\sqrt{h} = \frac{3}{r^2}$	
	$h = \frac{3}{r^2}$		(3)
11.2	$C = (2(3xh) + 2xh) \times 50 + (2 \times 3x^2) \times 100$	$\checkmark (2(3xh)+2xh)\times 50$	
	- (3) 3	$\checkmark(2\times3x^2)\times100$	
	$=8x\left(\frac{3}{x^2}\right)\times 50 + 600x^2$	` '	
		✓ substitution of $h = \frac{3}{x^2}$	
	$=\frac{1200}{x}+600x^2$		(3)
	OR		
	$C = (h \times 8x) \times 50 + (2 \times 3x^2) \times 100$	$\checkmark (h \times 8x) \times 50$ $\checkmark (2 \times 3x^2) \times 100$	
		$\checkmark (2 \times 3x^2) \times 100$	
	$=8x\left(\frac{3}{x^2}\right)\times 50 + 600x^2$	✓ substitution of $h = \frac{3}{r^2}$	
	1200	x^2	
	$=\frac{1200}{x}+600x^2$		(3)
11.3	$C = 1200x^{-1} + 600x^2$, dC	
		$\checkmark \frac{dC}{dx} = -1200x^{-2} + 1200x$	
	$\frac{dC}{dx} = -1200x^{-2} + 1200x$		
	$0 = -1200x^{-2} + 1200x$	$\sqrt{\frac{dC}{dx}} = 0$	
	$1200x^3 = 1200$		
		$\checkmark x^3 = 1$	
	$x^3 = 1$	$\checkmark x = 1$	
	x = 1 Therefore the width of the box is 1 metre.		(4)
	Therefore the width of the box is 1 metre.		(4) [10]
	I		10

NOV 2019

Q8.1

36cm

Q8.2

$$\therefore t = 6$$

only once

Q8.3

$$h(t) = -2t^3 + 15t^2 - 24t + 36$$

$$h'(t) = -6t^2 + 30t - 24$$

$$-6t^2 + 30t - 24 = 0$$

$$t^2 - 5t + 4 = 0$$

$$(t-4)(t-1)=0$$

$$t = 4$$
 or $t = 1$

Only t = 4 because maximum value required

$$h = -2(4)^3 + 15(4)^2 - 24(4) + 36 = 52 \text{ cm}$$

Q9.1

$$f'(x) = 9x^2$$

$$3x^3 = 9x^2$$

$$3x^3 - 9x^2 = 0$$

$$3x^2(x-3) = 0$$

$$x = 0$$
 or $x = 3$

Q9.2.1

For f and f'

Q9.2.2

The point (0; 0) is:

A point of inflection of f

A turning point of f'

Q9.3

$$f''(x) = 18x$$

Distance =
$$f''(1) - f'(1)$$

= $18(1) - 9(1)^2$
= 9

$$3x^3 - 9x^2 < 0$$

$$3x^2(x-3) < 0$$

but
$$3x^2 > 0$$

$$\therefore x-3 < 0$$

$$\therefore x < 3$$
, $x \neq 0$

QUESTION/VRAAG9

9.1	$340 = \pi r^2 h$	✓substitution into
	340	volume formula
	$\therefore h = \frac{340}{\pi r^2}$	✓answer
		(2)
9.2	$A = 2\pi r^2 + 2\pi rh$	✓ formula
	$= 2\pi r^2 + 2\pi r \left(\frac{340}{\pi r^2} \right)$	✓ substitution of h
	$=2\pi r^2 + 680r^{-1}$	(2)
9.3	$A(r) = 2\pi r^{2} + 680r^{-1}$ $A'(r) = 4\pi r - 680r^{-2}$	× 1= "
		$\checkmark 4\pi r$ $\checkmark -680r^{-2}$
	$4\pi r - 680r^{-2} = 0$	
	$4\pi r = \frac{680}{r^2}$	
	$r^3 = \frac{680}{4\pi}$	$\checkmark r^3 = \frac{680}{4\pi}$
	47.	
	$r = \sqrt[3]{\frac{680}{4\pi}}$ cm or 3,78 cm	✓answer
	V 4π	(4)
		[8]